目录
- Numpy介绍
- ndarray介绍
- 简单创建一个array类型数据
- ndarray与Python原生list运算效率对比
- N维数组-ndarray
- ndarray的属性
- ndarray的形状(ndarray.shape)
- ndarray的类型(ndarray.dtype)
- 举例代码
Numpy介绍
Numpy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组。
Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多。
Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。
ndarray介绍
NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。
用ndarray进行存储:
简单创建一个array类型数据
import numpy as np
# 创建ndarray
score = np.array([[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])
score
ndarray与Python原生list运算效率对比
在这里我们通过一段带运行来体会到ndarray的好处
import random
import time
import numpy as np
a=[]
for i in range(100000000):
a.append(random.random())
t1 = time.time()
sum1 = sum(a)
t2 = time.time()
b = np.array(a)
t4 = time.time()
sum3 = np.sum(b)
t5 = time.time()
#t2-t1为使用python自带的求和函数消耗的时间,t5-t4为使用numpy求和消耗的时间,结果为:
print(t2-t1,t5-t4)
从中我们看到ndarray的计算速度要快很多,节约了时间。
- 机器学习的最大特点就是大量的数据运算,那么如果没有一个快速的解决方案,那可能现在python也在机器学习领域达不到好的效果。
Numpy专门针对ndarray的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。
N维数组-ndarray
ndarray的属性
数组属性反映了数组本身固有的信息。
属性名字 | 属性解释 |
---|---|
ndarray.shape | 数组维度的元组 |
ndarray.ndim | 数组维数 |
ndarray.size | 数组中的元素数量 |
ndarray.itemsize | 一个数组元素的长度(字节) |
ndarray.dtype | 数组元素的类型 |
ndarray的形状(ndarray.shape)
# ndarray的形状
# 创建不同形状的数组
a = np.array([[1,2,3],[4,5,6]])
b = np.array([1,2,3,4])
c = np.array([[[1,2,3],[4,5,6]],[[1,2,3],[4,5,6]]])
a.shape # (2, 3) # 二维数组
b.shape # (4,) # 一维数组
c.shape # (2, 2, 3) # 三维数组
ndarray的类型(ndarray.dtype)
- 注意:若不指定,整数默认int64,小数默认float64
名称 | 描述 | 简写 |
---|---|---|
np.bool | 用一个字节存储的布尔类型(True或False) | ‘b’ |
np.int8 | 一个字节大小,-128 至 127 | ‘i’ |
np.int16 | 整数,-32768 至 32767 | ‘i2’ |
np.int32 | 整数,-2 31 至 2 32 -1 | ‘i4’ |
np.int64 | 整数,-2 63 至 2 63 - 1 | ‘i8’ |
np.uint8 | 无符号整数,0 至 255 | ‘u’ |
np.uint16 | 无符号整数,0 至 65535 | ‘u2’ |
np.uint32 | 无符号整数,0 至 2 ** 32 - 1 | ‘u4’ |
np.uint64 | 无符号整数,0 至 2 ** 64 - 1 | ‘u8’ |
np.float16 | 半精度浮点数:16位,正负号1位,指数5位,精度10位 | ‘f2’ |
np.float32 | 单精度浮点数:32位,正负号1位,指数8位,精度23位 | ‘f4’ |
np.float64 | 双精度浮点数:64位,正负号1位,指数11位,精度52位 | ‘f8’ |
np.complex64 | 复数,分别用两个32位浮点数表示实部和虚部 | ‘c8’ |
np.complex128 | 复数,分别用两个64位浮点数表示实部和虚部 | ‘c16’ |
np.object_ | python对象 | ‘O’ |
np.string_ | 字符串 | ‘S’ |
np.unicode_ | unicode类型 | ‘U’ |
举例代码
# ndarray的类型
a = np.array([[1, 2, 3],[4, 5, 6]], dtype=np.float32)
a.dtype # dtype('float32')
arr = np.array(['python', 'tensorflow', 'scikit-learn', 'numpy'], dtype =
np.string_)
arr.dtype # dtype('S12')