打印n层汉诺塔从最左边移动到最右边的全部过程
暴力递归就是尝试
1)把问题转化为规模缩小了的同类问题的子问题
2)有明确的不需要继续进行递归的条件(base case)
3)有当得到了子问题的结果之后的决策过程
4)不记录每一个子问题的解
补充一点,如果记录每一个子问题的解就是动态规划,后续文章会讲到。
递归方法
假设有3跟柱子,左、中、右,我们细分为如下三个步骤:
1)将1~N-1层圆盘从左 -> 中(大问题,需要继续划分为小问题)
2)将第N层圆盘从左 -> 右(base case)
3)将1~N-1层圆盘从中 -> 右(大问题,需要继续划分为小问题)
递归方法改进版
如果我们忘记柱子的左中右,将三根柱子标记为from、to、other。我们实现的是,将所有的圆盘(一共N层)从from -> to,同样细分为3个步骤:
1)将1~N-1层圆盘从from -> other(大问题,需要继续划分为小问题)
2)将第N层圆盘从from -> to(base case,可以直接打印)
3)将1~N-1层圆盘从other -> to(大问题,需要继续划分为小问题)
貌似没什么改进,因为还是细分这三步,同样要递归,但关键在于忘掉柱子的左中右顺序,只需要三个变量,代码可以少很多。
总结
汉诺塔问题还有非递归的解法,因为任何递归都可以改成非递归,只需要自己设计压栈。但是博主个人认为汉诺塔的递归方法比非递归更好容易理解和实现,非递归自己去设计压栈还比较麻烦,博主目前也还没弄懂,所以就只附上代码了。后面如果搞懂了在补充吧,😄
附上完整代码
package com.harrison.class12;
import java.util.Stack;
public class Code01_Hanoi {
public static void leftToRight(int n) {
if(n==1) {
System.out.println("move 1 from left to right");
return ;
}
leftToMid(n-1);
System.out.println("move "+ n +" from left to right");
midToRight(n-1);
}
public static void leftToMid(int n) {
if(n==1) {
System.out.println("move 1 from left to mid");
return ;
}
leftToRight(n-1);
System.out.println("move "+ n +" from left to mid");
rightToMid(n-1);
}
public static void midToRight(int n) {
if(n==1) {
System.out.println("move 1 from mid to right");
return ;
}
midToLeft(n-1);
System.out.println("move "+ n +" from mid to right");
leftToRight(n-1);
}
public static void midToLeft(int n) {
if(n==1) {
System.out.println("move 1 from mid to left");
return ;
}
midToRight(n-1);
System.out.println("move "+ n +" from mid to left");
rightToLeft(n-1);
}
public static void rightToLeft(int n) {
if(n==1) {
System.out.println("move 1 from right to left");
return ;
}
rightToMid(n-1);
System.out.println("move "+ n +" from right to left");
midToLeft(n);
}
public static void rightToMid(int n) {
if(n==1) {
System.out.println("move 1 from right to mid");
return ;
}
rightToLeft(n-1);
System.out.println("move "+ n +" from right to mid");
leftToMid(n-1);
}
public static void hanoi1(int n) {
leftToRight(n);
}
public static void f(int n,String from,String to,String other) {
if(n==1) {
System.out.println("move 1 from "+ from + " to " + to);
}else {
f(n-1, from, other, to);
System.out.println("move " + n + " from " +from +" to "+to);
f(n-1, other,to,from);
}
}
public static void hanoi2(int n) {
if(n>0) {
f(n, "left", "right", "mid");
}
}
public static class Record {
public boolean finish1;
public int base;
public String from;
public String to;
public String other;
public Record(boolean f1, int b, String f, String t, String o) {
finish1 = false;
base = b;
from = f;
to = t;
other = o;
}
}
public static void hanoi3(int N) {
if (N < 1) {
return;
}
Stack<Record> stack = new Stack<>();
stack.add(new Record(false, N, "left", "right", "mid"));
while (!stack.isEmpty()) {
Record cur = stack.pop();
if (cur.base == 1) {
System.out.println("Move 1 from " + cur.from + " to " + cur.to);
if (!stack.isEmpty()) {
stack.peek().finish1 = true;
}
} else {
if (!cur.finish1) {
stack.push(cur);
stack.push(new Record(false, cur.base - 1, cur.from, cur.other, cur.to));
} else {
System.out.println("Move " + cur.base + " from " + cur.from + " to " + cur.to);
stack.push(new Record(false, cur.base - 1, cur.other, cur.to, cur.from));
}
}
}
}
public static void main(String[] args) {
int n=3;
hanoi1(n);
System.out.println("=======================");
hanoi2(n);
System.out.println("=======================");
hanoi3(n);
System.out.println("=======================");
}
}