你的位置:首页 > 信息动态 > 新闻中心
信息动态
联系我们

tensorflow serving

2021/12/23 0:11:40

1 模型训练保存为 models.save_model

import sys 
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess

#1 创建模型
(train_images, train_labels), (test_images, test_labels) = keras.datasets.fashion_mnist.load_data()

# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0

# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
# 2 训练和评估模型
model = keras.Sequential([
  keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3, 
                      strides=2, activation='relu', name='Conv1'),
  keras.layers.Flatten(),
  keras.layers.Dense(10, name='Dense')
])
model.summary()

testing = False
epochs = 5

model.compile(optimizer='adam', 
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=epochs)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\nTest accuracy: {}'.format(test_acc))

# 3 保存模型 为 SaveModel 格式
MODEL_DIR = './model'
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))
tf.keras.models.save_model(
    model,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)

print('\nSaved model:')

4检查模型
使用saved_model_cli命令查看savemodel保存后的的模型和方法

python D:\pythonapp\anacondas\envs\torchenv\Lib\site-packages\tensorflow\python\tools\saved_model_cli.py show --dir model\1 --all
MetaGraphDef with tag-set: ‘serve’ contains the following SignatureDefs:

signature_def['__saved_model_init_op']:
  The given SavedModel SignatureDef contains the following input(s):
  The given SavedModel SignatureDef contains the following output(s):
    outputs['__saved_model_init_op'] tensor_info:
        dtype: DT_INVALID
        shape: unknown_rank
        name: NoOp
  Method name is:

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['Conv1_input'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 28, 28, 1)
        name: serving_default_Conv1_input:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['Dense'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 10)
        name: StatefulPartitionedCall:0
  Method name is: tensorflow/serving/predict

2 Serve your model with TensorFlow Serving

install Tensorflow Serving using Aptitude environment ,not doker.

Note: This example is running TensorFlow Serving natively, but you can also run it in a Docker container, which is one of the easiest ways to get started using TensorFlow Serving.

import sys
# We need sudo prefix if not on a Google Colab.
if 'google.colab' not in sys.modules:
  SUDO_IF_NEEDED = 'sudo'
else:
  SUDO_IF_NEEDED = ''
# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo
# You would instead do:
# echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | {SUDO_IF_NEEDED} tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | {SUDO_IF_NEEDED} apt-key add -
!{SUDO_IF_NEEDED} apt update

2.1 Install TensorFlow Serving

!{SUDO_IF_NEEDED} apt-get install tensorflow-model-server

2.2 Start running TensorFlow Serving

os.environ["MODEL_DIR"] = MODEL_DIR
%%bash --bg 
nohup tensorflow_model_server \
  --rest_api_port=8501 \
  --model_name=fashion_model \
  --model_base_path="${MODEL_DIR}" >server.log 2>&1

2.3 Make a request to model in TensorFlow Serving

def show(idx, title):
  plt.figure()
  plt.imshow(test_images[idx].reshape(28,28))
  plt.axis('off')
  plt.title('\n\n{}'.format(title), fontdict={'size': 16})


import json
# 模型输入数据
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:10].tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))


# 模型请求
import requests
headers = {"content-type": "application/json"}
# use the latest version 
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
  class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))

# docs_infra: no_execute
headers = {"content-type": "application/json"}
#   specifying a particular version
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

for i in range(5,9):
  show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
    class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))